Main Menu


A colorimeter is a device used in colorimetry. The word generally refers to the device that measures the absorbance of particular wavelengths of light by a specific solution. This device is most commonly used to determine the concentration of a known solute in a given solution by the application of the Beer-Lambert law.

Principle of colorimetry

Colored solutions have the property of absorbing light of definite wave lengths. The amount of light absorbed or transmitted by a colored solution is in accordance with the Beer-Lambert law.

Beer’s law- The intensity of the color is directly proportional to the concentration of the colored particles in the solution.

Lambert’s law- The amount of light absorbed by a colored solution depends on the length of the column or the depth of the depth of the liquid through which the light passes.


When a monochromatic light with an original intensity ‘Io’, passes through a solution that can absorb radiant energy, Is will be less than the Io.

Some of the radiant energy is reflected back by the cell containing the solution, or absorbed by the cell wall or the solvent.

The amount of radiation absorbed may be measured in a number of ways:

  1. By measuring transmittance
  2. by measuring absorbance

1. By measuring transmittance-  The transmittance (T) is defined as-

T= Is/ Io

The ratio is expressed as percentage, thus

% T= 100 x Is/ Io

As the concentration of the compound increases, less light is transmitted.

%T varies inversely and logarithmically with the concentration.

 2) By measuring absorbance-  Absorbance measurement is convenient than transmittance.

Absorbance (A) or optical density is directly proportional to the concentration.

The relationship between absorbance and transmittance can be expressed as –

A = – log Is/ Io

   = – log T

   = log 1/T

To convert T to % T,

A = log 1/T x 100/100

   = log (100)/%T

   = log 100-log %T

    = 2-log %T


A = 2-log %T

In other words, absorbance (Optical density) and Transmittance (T) are reciprocally related.

So, if all the light passes through a solution without any absorption, then absorbance is zero, and percent transmittance is 100%. If all the light is absorbed, then percent transmittance is zero, and absorption is infinite (Figure-1)

Absorbance versus Transmittance

Figure 1: Transmittance and absorbance are reciprocally related.

Lambert -Beer’s law

The mathematical expression at a given wavelength can be represented as follows-

OD = A = Ʃcl


OD = – log Is/ Io

(Absorption has no units, since it is a ratio)


– log Is/ Io = cl

or Is/ Io = e Ʃcl

Where =Ʃ is a Constant- It is the molar extinction coefficient( Molar absorptivity) with units of L mol-1 cm-1

C = Concentration of the colored substance, expressed in mol L-1

l = is the path length of the sample – that is, the path length of the cuvette in which the sample is contained.

e- base of the natural logarithm.

Since Is/ Io is known as transmittance (T)


T= e Ʃcl

Taking logarithm:

-log 10T =Ʃcl

As per equation:

-log T= A


A = OD = Ʃcl

Since the thickness of the layer of solution is constant in the instrument, optical density is proportional to the concentration.

When optical density is plotted against concentration “c”, a straight line passing through the origin should be obtained, because the absorbance is directly proportional to the concentration. (Figure-2)

Absorbance versus concentration

Figure 2: Relationship of absorbance and concentration of a solute in a solution


The concentration of an unknown solution can be readily determined by measurement of its absorbance and interpolation of its concentration from the graph of the standards.

When % T is plotted versus concentration, a curvilinear relationship is obtained.

The linear relationship between concentration and absorbance is both simple and straightforward, which is why it is preferred to express the Beer-Lambert law using absorbance as a measure of the absorption rather than %T.

Calculation of unknown concentration in the test sample

Since there is a linear relationship between absorbance and concentration, it is possible to calculate the unknown concentration of a substance in the test sample by simple proportional equation-

Absorbance of unknown         Concentration of unknown

———————————- = ————————————–

Absorbance of standard          Concentration of Standard

                                                            Absorption of unknown

Concentration of unknown = ————————————— x Concentration of Standard

                                                            Absorption of standard


Concentration of Unknown (Test sample T)

                                                            OD of Test

                                                = ————————– x Concentration of Standard

                                                            OD of standard

Some of the incident energy may be reflected by the cell containing the solution or absorbed by the cell wall or the solvent. To eliminate these factors and to consider the absorption by the compound, a blank solution or a reference solution having everything but the compound to be measured is used.

Thus The concentration of unknown can be expressed as-

Concentration of Unknown (Test sample T)

                                                            OD of Test – OD of Blank

                                                = —————————————— x Concentration of Standard

                                                            OD of standard – OD of Blank

Deviations from Beer’s law are observed when a very large concentration of an unknown substance is measured or when the incident light is not mono chromatic light.


Components of a photo colorimeter

1) Light source

The light source is usually a tungsten lamp for wavelength in the visible range (320-700 nm) and a deuterium or hydrogen lamp for ultraviolet light (below 350 nm). Hydrogen lamp is usually preferred to UV range.

2) Monochromators

This is for the selection of sufficiently narrow wave band. The monochromator consists of an entrance slit to exclude unwanted, followed by absorption or interference filters, prisms or diffraction grating for wave length selection. (Figure-3)


Figure 3: Components of a colorimeter.


The interference filters consist of thin layer of magnesium fluoride crystals with a semitransparent coating of silver on each side. The interference filters have a bandpass of 5-8 nm. The band pass is defined as the width of the spectrum that will be isolated by a monochromator. The choice of filter depends upon the final color of the  solution formed.

Wave length (nm) Filter used/Color absorbed Color of solution
350-430 Violet Yellow Blue
430-475 Blue Yellow
475- 495 Green blue Orange
495-505 Blue green Red
505-555 Green Purple
555-575 Yellow green Violet
575-600 Yellow Blue
600=650 Orange Green blue
650-700 Red Blue green

3) Lens

Instruments using filters as wavelength selectors require lenses to focus correctly the light from the source through the filter and cuvette to the detector. In the ultraviolet range, quartz or fused silica is essential because the glass does not transmit light efficiently at wave length shorter than 340 nm.

An exit slit at the end of monochromator allows only a narrow fraction of the spectrum of reach the sample cuvette.

4) Sample cuvette

For accurate and precise reading, cuvette must be transparent, clean, devoid of any scratches. The optical path of the cuvette is always 1 cm. Glass cuvettes are used for reading in the visible light range while quartz or fused silica cuvettes are used for UV range.

5) Photosensitive detectors

These detectors contain a light-sensitive surface that releases electrons in number proportional to the intensity of light on it, converting light energy into electrical energy. Different detectors used are-

a) Barrier layer cells

b) Photosensitive tubes

c) Photomultiplier tubes

d) Photoconductive cells

6) Read out devices– The detector response can be measured by any of the following read out devices-

a) Galvanometer

b) Ammeter

c) Recorder

d) Digital read out.

The signal may be transmitted to computer or print out device. Most modern instruments are of direct reading type where the amplified detector signal operates a galvanometer.




Please help "Biochemistry for Medics" by CLICKING ON THE ADVERTISEMENTS above!